QUICKSORT

Quicksort

RONALD GEMMY DWIPUTRA, M.ARASY.MUFAKKIR, RAHMAT YULI PURWANTO

Program Studi Sarjana Teknik Informatika
Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jakarta
2010

Introduction
Algoritma Quick Sort
Pengenalan
Algoritma quick sort diperkenalkan pertama kali oleh C.A.R. Hoare pada tahun 1960, dan dimuat sebagai artikel di “Computer Journal 5” pada April 1962. Quick sort adalah algoritma sorting yang berdasarkan pembandingan dengan metoda divide-and-conqueror. Disebut Quick Sort, karena Algoritma quick sort mengurutkan dengan sangat cepat. Quick sort disebut juga dengan partition exchange sort, karena konsepnya membuat partisi-partisi, dan sort dilakukan per partisi.
(i) pilih x ϵ {a1, a2, …, an} sebagai elemen pivot.
(ii) pindai (scan) tabel dari kiri sampai ditemukan elemen ap ≥ x.
(iii) pindai tabel dari kanan sampai ditemukan elemen aq ≤ x
(iv) pertukarkan ap <-> aq
(v) ulangi (ii) dari posisi p + 1, dan (iii) dari posisi q – 1, sampai kedua pemindaian bertemu di tengah tabel.
Algoritma quick sort mengurutkan dengan sangat cepat, namun algoritma ini sangat komplex dan diproses secara rekursif. Sangat memungkinkan untuk menulis algoritma yang lebih cepat untuk beberapa kasus khusus, namun untuk kasus umum, sampai saat ini tidak ada yang lebih cepat dibandingkan algoritma quick sort.
Walaupun begitu algoritma quick sort tidak selalu merupakan pilihan yang terbaik. Seperti yang telah disebutkan sebelumnya, algoritma ini dilakukan secara rekursif yang berarti jika dilakukan untuk tabel yang berukuran sangat besar, walaupun cepat, dapat menghabiskan memori yang besar pula. Selain itu, algoritma ini adalah algoritma yang terlalu komplex untuk mengurutkan tabel yang berukuran kecil (hanya puluhan elemen misalnya). Selain itu algoritma quick sort mempunyai tingkat efisiensi yang buruk ketika dioperasikan pada tabel yang hampir terurut atau pada tabel yang terurut menurun.

Algoritma :
Pivot <- A[(i+j) div 2] { pivot = elemen tengah } p <- i q <- j repeat while a[p] <>= pivot }
while a[q] > pivot do
q <- q – 1 endwhile { Aq >= pivot }
if (p _ q) then
{ pertukarkan a[p] dengan a[q]}
temp <- a[p] a[p] <- a[q] a[q] <- temp { tentukan awal pemindaian berikutnya} p <- p+ 1 q <- q – 1 endif until p > q

Deklarasi :
k : integer;
Algoritma :
if (i
Partisi(a,i,j,k) { Ukuran (a) > 1}
QuickSort(a,i,k)
QuickSort(a,k+1, j)
Endif
Procedure Partisi (input/output: a : array[1..n] of integer, input i , j : integer, output q : integer)
{Membagi tabel a[i..j] menjadi subtabel a[i..q] dan a[q+1..j]. Keluaran upatabel a[i..q] dan subtabel a[q+1..j]. Sedemikian sehingga elemen tabel a[i..q] lebih kecil dari elemen tabel a[q+1..j]}
Deklarasi :
Pivot, temp : integer
Algoritma :
if (i
Partisi(a,i,j,k) { Ukuran (a) > 1}
QuickSort(a,i,k)
QuickSort(a,k+1, j)
Endif
Procedure Partisi (input/output: a : array[1..n] of integer, input i , j : integer, output q : integer)
{Membagi tabel a[i..j] menjadi subtabel a[i..q] dan a[q+1..j]. Keluaran upatabel a[i..q] dan subtabel a[q+1..j]. Sedemikian sehingga elemen tabel a[i..q] lebih kecil dari elemen tabel a[q+1..j]}
Deklarasi :
Pivot, temp : integer

Kompleksitas Algoritma Quick Sort
Kebutuhan waktu dari quicksort bergantung pada pembuatan partisi, seimbang atau tidak, yang bergantung juga pada elemen yang digunakan sebagai pivot. Dalam menghitung kompleksitas ini, perlu dilihat pula perhitungan recurrence, karena terdapat fungsi rekursif untuk penyelesaian sub-masalah.
Terdapat 3 jenis kompleksitas waktu dari quicksort:
1. Kasus terburuk (worst case), yaitu terjadi bila terbentuk partisi dengan komposisi sub-masalah antara n – 1 elemen dan 0 elemen. Dengan demikian pemanggilan fungsi secara rekursif dengan array berukuran 0 akan langsung kembali, T(0) = Θ(1), sehingga berlaku: T(n) = T(n – 1) + cn = O(n2).
2. Kasus terbaik (best case), yaitu terjadi bila terbentuk partisi dengan dengan komposisi seimbang, dengan ukuran masing-masing tidak lebih dari n/2. Sehingga didapat: T(n) = 2T(n/2) + cn = na + cn log n = O(n log n).
3. Kasus rata-rata (average case), yaitu terjadi dari perimbangan pivot antara terbaik dan terburuk, yang dalam prakteknya lebih mendekati kasus terbaik ketimbang terburuk. Sehingga didapat: Tavg(n) = O(n log n).

pivIndex = partition(x,first, last);
quicksort(x,first,(pivIndex-1));
quicksort(x,(pivIndex+1),last);
}
}
int partition(int y[], int f, int l) {
int up,down,temp;
int piv = y[f];
up = f;
down = l;
goto partLS;
do {
temp = y[up];
y[up] = y[down];
y[down] = temp;
partLS:
while (y[up] <= piv && up <> piv && down > f ) {
down–;
}
} while (down > up);
y[f] = y[down];
y[down] = piv;
return down;}


Program C++ Quicksort

#include
void tampilkan_larik(int data[], int n)
{
int i;
for (i=0;i
cout << x="data[a];" i="a;" j="c;"> x)
j=j-1;
while (data[i] < i="i+1;" tmp="data[i];" b="partisi(data," jum_data="8;">

Digital Clock


ShoutMix chat widget

Followers